Thursday, October 27, 2016

Durchschnittliche Vorgehensweise

Gleitender Durchschnitt - MA BREAKING DOWN Gleitender Durchschnitt - MA Als SMA-Beispiel gilt eine Sicherheit mit folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die ersten 10 Tage als ersten Datenpunkt ausrechnen. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge des zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Abwärts-Momentum wird mit einem bärischen Übergang bestätigt, der auftritt, wenn ein kurzfristiges MA-Kreuz unter einer längerfristigen MA. Smoothing Daten entfernt zufällige Variation und zeigt Trends und zyklische Komponenten Inhärent in der Sammlung von Daten im Laufe der Zeit genommen ist eine Form von zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik zeigt, wenn sie richtig angewendet wird, deutlicher den zugrunde liegenden Trend, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mittelwertbildung ist der einfachste Weg, um Daten zu glätten Wir werden zunächst einige Mittelungsmethoden untersuchen, z. B. den einfachen Mittelwert aller vergangenen Daten. Ein Manager eines Lagers möchte wissen, wie viel ein typischer Lieferant in 1000-Dollar-Einheiten liefert. Er / sie nimmt eine Stichprobe von 12 Lieferanten, die zufällig die folgenden Ergebnisse erhalten: Der berechnete Mittelwert oder Durchschnitt der Daten 10. Der Manager beschließt, dies als Schätzung der Ausgaben eines typischen Lieferanten zu verwenden. Ist dies eine gute oder schlechte Schätzung Mittel quadratischen Fehler ist ein Weg, um zu beurteilen, wie gut ein Modell ist Wir berechnen die mittlere quadratische Fehler. Der Fehler true Betrag verbraucht minus die geschätzte Menge. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel verwenden, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittliche Gewichtungen alle früheren Beobachtungen gleich In Zusammenfassung, wir sagen, dass die einfachen Mittelwert oder Mittelwert aller vergangenen Beobachtungen ist nur eine nützliche Schätzung für die Prognose, wenn es keine Trends. Wenn es Trends, verwenden Sie verschiedene Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle früheren Beobachtungen gleichermaßen. Zum Beispiel ist der Durchschnitt der Werte 3, 4, 5 4. Wir wissen natürlich, dass ein Durchschnitt berechnet wird, indem alle Werte addiert werden und die Summe durch die Anzahl der Werte dividiert wird. Eine andere Methode, den Durchschnitt zu berechnen, ist die Addition jedes Wertes durch die Anzahl der Werte oder 3/3 4/3 5/3 1 1.3333 1.6667 4. Der Multiplikator 1/3 wird als Gewicht bezeichnet. Allgemein: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. ,, Links (frac rechts) xn. Die (links (frac rechts)) sind die Gewichte und natürlich summieren sie sich auf 1. Eine Zeitreihe ist eine Folge von Beobachtungen einer periodischen Zufallsvariablen. Beispiele dafür sind die monatliche Nachfrage nach einem Produkt, die jährliche Neueinreichung in einer Abteilung der Universität und die täglichen Flüsse in einem Fluss. Zeitreihen sind wichtig für Operations Research, weil sie oft die Treiber von Entscheidungsmodellen sind. Ein Inventarmodell erfordert Schätzungen zukünftiger Anforderungen, ein Kursterminierungs - und Personalmodell für eine Universitätsabteilung erfordert Schätzungen des zukünftigen Zuflusses von Schülern und ein Modell für die Bereitstellung von Warnungen für die Bevölkerung in einem Flusseinzugsgebiet erfordert Schätzungen der Flussströme für die unmittelbare Zukunft. Die Zeitreihenanalyse liefert Werkzeuge zur Auswahl eines Modells, das die Zeitreihen beschreibt und das Modell zur Prognose zukünftiger Ereignisse verwendet. Das Modellieren der Zeitreihen ist ein statistisches Problem, da beobachtete Daten in Berechnungsverfahren verwendet werden, um die Koeffizienten eines vermeintlichen Modells abzuschätzen. Modelle gehen davon aus, dass Beobachtungen zufällig über einen zugrunde liegenden Mittelwert, der eine Funktion der Zeit ist, variieren. Auf diesen Seiten beschränken wir die Aufmerksamkeit auf die Verwendung von historischen Zeitreihendaten, um ein zeitabhängiges Modell abzuschätzen. Die Methoden eignen sich zur automatischen, kurzfristigen Prognose häufig verwendeter Informationen, bei denen sich die zugrunde liegenden Ursachen der zeitlichen Variation nicht rechtzeitig ändern. In der Praxis werden die von diesen Methoden abgeleiteten Prognosen anschließend von menschlichen Analytikern modifiziert, die Informationen enthalten, die aus den historischen Daten nicht verfügbar sind. Unser Hauptziel in diesem Abschnitt ist es, die Gleichungen für die vier Prognosemethoden zu präsentieren, die im Prognose-Add-In verwendet werden: gleitender Durchschnitt, exponentielle Glättung, Regression und doppelte exponentielle Glättung. Diese werden als Glättungsmethoden bezeichnet. Zu den nicht berücksichtigten Methoden gehören qualitative Prognose, multiple Regression und autoregressive Methoden (ARIMA). Die, die an der umfangreicheren Abdeckung interessiert sind, sollten die Prognoseprinzipien Aufstellungsort besuchen oder ein der ausgezeichneten Bücher auf dem Thema lesen. Wir verwendeten das Buch Prognose. Von Makridakis, Wheelwright und McGee, John Wiley amp Sons, 1983. Um die Excel-Beispiele-Arbeitsmappe zu verwenden, muss das Prognose-Add-In installiert sein. Wählen Sie den Relink-Befehl, um die Links zum Add-In zu erstellen. Diese Seite beschreibt die Modelle für die einfache Prognose und die Notation für die Analyse verwendet. Diese einfachste Prognosemethode ist die gleitende Durchschnittsprognose. Die Methode ist einfach Mittelwerte der letzten m Beobachtungen. Es ist nützlich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Diese Methode berücksichtigt die gesamte Vergangenheit in ihrer Prognose, aber wiegt jüngste Erfahrungen stärker als weniger jüngste. Die Berechnungen sind einfach, da nur die Schätzung der vorherigen Periode und die aktuellen Daten die neue Schätzung bestimmen. Das Verfahren eignet sich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Die Methode des gleitenden Mittels reagiert nicht gut auf eine Zeitreihe, die mit der Zeit zunimmt oder abnimmt. Hierbei handelt es sich um einen linearen Trendbegriff im Modell. Das Regressionsverfahren nähert sich dem Modell an, indem es eine lineare Gleichung entwickelt, die die kleinsten Quadrate an die letzten m Beobachtungen anpasst. Moving durchschnittliche und exponentielle Glättungsmodelle Als ein erster Schritt, um jenseits der mittleren Modelle, der zufälligen Wegmodelle und der linearen Trendmodelle, Und Trends können mit einem gleitenden Durchschnitt oder Glättungsmodell extrapoliert werden. Die grundlegende Annahme hinter Mittelwertbildung und Glättungsmodellen ist, dass die Zeitreihe lokal stationär mit einem sich langsam verändernden Mittelwert ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als "quotsmoothedquot" - Version der ursprünglichen Serie bezeichnet, da die kurzzeitige Mittelung die Wirkung hat, die Stöße in der ursprünglichen Reihe zu glätten. Durch Anpassen des Glättungsgrades (die Breite des gleitenden Durchschnitts) können wir hoffen, eine Art von optimaler Balance zwischen der Leistung des Mittelwerts und der zufälligen Wandermodelle zu erreichen. Die einfachste Art der Mittelung Modell ist die. Einfache (gleichgewichtige) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Mittelwert der letzten m Beobachtungen: (Hier und anderswo werde ich das Symbol 8220Y-hat8221 stehen lassen Für eine Prognose der Zeitreihe Y, die am frühestmöglichen früheren Zeitpunkt durch ein gegebenes Modell durchgeführt wird.) Dieser Mittelwert wird in der Periode t (m1) / 2 zentriert, was bedeutet, daß die Schätzung des lokalen Mittels dazu tendiert, hinter dem Wert zu liegen Wahren Wert des lokalen Mittels um etwa (m1) / 2 Perioden. Das durchschnittliche Alter der Daten im einfachen gleitenden Durchschnitt ist also (m1) / 2 relativ zu der Periode, für die die Prognose berechnet wird: dies ist die Zeitspanne, in der die Prognosen dazu tendieren, hinter den Wendepunkten in der Daten. Wenn Sie z. B. die letzten 5 Werte mitteln, werden die Prognosen etwa 3 Perioden spät sein, wenn sie auf Wendepunkte reagieren. Beachten Sie, dass, wenn m1, die einfache gleitende Durchschnitt (SMA) - Modell ist gleichbedeutend mit der random walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar der Länge des Schätzzeitraums), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um den besten Quotienten der Daten zu erhalten, d. H. Die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel einer Reihe, die zufällige Fluktuationen um ein sich langsam veränderndes Mittel zu zeigen scheint. Erstens können wir versuchen, es mit einem zufälligen Fußmodell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff entspricht: Das zufällige Fußmodell reagiert sehr schnell auf Änderungen in der Serie, aber dabei nimmt er viel von der quotnoisequot in der Daten (die zufälligen Fluktuationen) sowie das Quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen anwenden, erhalten wir einen glatteren Satz von Prognosen: Der 5-Term-einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Wegmodell. Das durchschnittliche Alter der Daten in dieser Prognose beträgt 3 ((51) / 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zu liegen. (Zum Beispiel scheint ein Abschwung in Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich erst nach mehreren Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie beim zufälligen Weg Modell. Somit geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während jedoch die Prognosen aus dem Zufallswegmodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Mittelwert der neueren Werte. Die von Statgraphics berechneten Konfidenzgrenzen für die Langzeitprognosen des einfachen gleitenden Durchschnitts werden nicht breiter, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Vertrauensintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Konfidenzgrenzen für die längerfristigen Prognosen zu berechnen. Beispielsweise können Sie eine Tabellenkalkulation einrichten, in der das SMA-Modell für die Vorhersage von 2 Schritten im Voraus, 3 Schritten voraus usw. innerhalb der historischen Datenprobe verwendet wird. Sie könnten dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addieren und Subtrahieren von Vielfachen der geeigneten Standardabweichung konstruieren. Wenn wir einen 9-term einfachen gleitenden Durchschnitt ausprobieren, erhalten wir sogar noch bessere Prognosen und mehr eine nacheilende Wirkung: Das Durchschnittsalter beträgt jetzt 5 Perioden ((91) / 2). Wenn wir einen 19-term gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10 an: Beachten Sie, dass die Prognosen tatsächlich hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, darunter auch einen 3-Term-Durchschnitt: Modell C, der 5-term gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE mit einer kleinen Marge über die 3 - term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Rückkehr nach oben.) Browns Einfache Exponentialglättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, daß es die letzten k-Beobachtungen gleich und vollständig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die zweitletzte erhalten, und die 2. jüngsten sollten ein wenig mehr Gewicht als die 3. jüngsten erhalten, und bald. Das einfache exponentielle Glättungsmodell (SES) erfüllt dies. 945 bezeichnen eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. H. Den lokalen Mittelwert) der Serie, wie er aus Daten bis zu der Zeit geschätzt wird, darstellt. Der Wert von L zur Zeit t wird rekursiv von seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorher geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf die neueste steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert: Äquivalent können wir die nächste Prognose direkt in Form früherer Prognosen und früherer Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung des bisherigen Fehlers um einen Bruchteil 945 erhalten Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Abzinsungsfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu verwenden, wenn Sie das Modell in einer Tabellenkalkulation implementieren Einzelne Zelle und enthält Zellverweise, die auf die vorhergehende Prognose, die vorherige Beobachtung und die Zelle mit dem Wert von 945 zeigen. Beachten Sie, dass, wenn 945 1, das SES-Modell entspricht einem zufälligen Weg-Modell (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, wobei angenommen wird, dass der erste geglättete Wert gleich dem Mittelwert gesetzt ist. (Zurück zum Seitenanfang) Das Durchschnittsalter der Daten in der Simple-Exponential-Glättungsprognose beträgt 1/945 relativ zu dem Zeitraum, für den die Prognose berechnet wird. (Dies sollte nicht offensichtlich sein, kann aber leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher zu Verzögerungen hinter den Wendepunkten um etwa 1/945 Perioden. Wenn beispielsweise 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Eine Verzögerung) ist die einfache exponentielle Glättungsprognose (SES) der simplen gleitenden Durchschnittsprognose (SMA) etwas überlegen, weil sie relativ viel mehr Gewicht auf die jüngste Beobachtung - i. e stellt. Es ist etwas mehr quresponsivequot zu Änderungen, die sich in der jüngsten Vergangenheit. Zum Beispiel haben ein SMA - Modell mit 9 Terminen und ein SES - Modell mit 945 0,2 beide ein durchschnittliches Alter von 5 Jahren für die Daten in ihren Prognosen, aber das SES - Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA - Modell und am Gleiches gilt für die Werte von mehr als 9 Perioden, wie in dieser Tabelle gezeigt: 822forget8221. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist und somit leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Serie ergibt sich wie folgt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 1 / 0,2961 3,4 Perioden, was ähnlich wie bei einem 6-Term-Simple Moving ist durchschnittlich. Die Langzeitprognosen aus dem SES-Modell sind eine horizontale Gerade. Wie im SMA-Modell und dem Random-Walk-Modell ohne Wachstum. Es ist jedoch anzumerken, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftigen Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das Zufallswegmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das Zufallswandermodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So dass die statistische Theorie der ARIMA-Modelle eine solide Grundlage für die Berechnung der Konfidenzintervalle für das SES-Modell bildet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht sonderbaren Differenz, einem MA (1) - Term und kein konstanter Term. Ansonsten als quotARIMA (0,1,1) - Modell ohne Konstantquot bekannt. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Größe 1 - 945 im SES-Modell. Wenn Sie zum Beispiel ein ARIMA-Modell (0,1,1) ohne Konstante an die hier analysierte Serie anpassen, ergibt sich der geschätzte MA (1) - Koeffizient auf 0,7029, was fast genau ein Minus von 0,2961 ist. Es ist möglich, die Annahme eines von Null verschiedenen konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu wird ein ARIMA-Modell mit einer nicht sonderbaren Differenz und einem MA (1) - Term mit konstantem, d. H. Einem ARIMA-Modell (0,1,1) mit konstantem Wert angegeben. Die langfristigen Prognosen haben dann einen Trend, der dem durchschnittlichen Trend über den gesamten Schätzungszeitraum entspricht. Sie können dies nicht in Verbindung mit saisonalen Anpassungen tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist. Sie können jedoch einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die prozentuale Zinssatzquote (prozentuale Wachstumsrate) pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmuswandlung angepasst ist, oder es kann auf anderen unabhängigen Informationen bezüglich der langfristigen Wachstumsperspektiven beruhen . (Rückkehr nach oben.) Browns Linear (dh doppelt) Exponentielle Glättung Die SMA-Modelle und SES-Modelle gehen davon aus, dass es in den Daten keine Tendenzen gibt (die in der Regel in Ordnung sind oder zumindest nicht zu schlecht für 1- Wenn die Daten relativ verrauscht sind), und sie können modifiziert werden, um einen konstanten linearen Trend, wie oben gezeigt, zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen das Rauschen auszeichnet, und wenn es notwendig ist, mehr als eine Periode vorher zu prognostizieren, könnte die Schätzung eines lokalen Trends auch sein Ein Problem. Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungsmodell (LES) zu erhalten, das lokale Schätzungen sowohl des Niveaus als auch des Trends berechnet. Das einfachste zeitvariable Trendmodell ist Browns lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Eine weiterentwickelte Version dieses Modells, Holt8217s, wird unten diskutiert.) Die algebraische Form des Brown8217s linearen exponentiellen Glättungsmodells, wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von unterschiedlichen, aber äquivalenten Formen ausgedrückt werden. Die quadratische quadratische Form dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einfacher exponentieller Glättung auf Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern wir uns, Exponentielle Glättung, dies wäre die Prognose für Y in der Periode t1.) Dann sei Squot die doppelt geglättete Reihe, die man erhält, indem man eine einfache exponentielle Glättung (unter Verwendung desselben 945) auf die Reihe S anwendet: Schließlich die Prognose für Ytk. Für jedes kgt1 ist gegeben durch: Dies ergibt e & sub1; & sub0; (d. h. Cheat ein Bit, und die erste Prognose ist gleich der tatsächlichen ersten Beobachtung) und e & sub2; Y & sub2; 8211 Y & sub1; Nach denen die Prognosen unter Verwendung der obigen Gleichung erzeugt werden. Dies ergibt die gleichen Anpassungswerte wie die Formel auf der Basis von S und S, wenn diese mit S 1 S 1 Y 1 gestartet wurden. Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt8217s Lineares Exponentialglättung Brown8217s LES-Modell berechnet lokale Schätzungen von Pegel und Trend durch Glätten der letzten Daten, aber die Tatsache, dass dies mit einem einzigen Glättungsparameter erfolgt, legt eine Einschränkung für die Datenmuster fest, die er anpassen kann: den Pegel und den Trend Dürfen nicht zu unabhängigen Preisen variieren. Holt8217s LES-Modell adressiert dieses Problem durch zwei Glättungskonstanten, eine für die Ebene und eine für den Trend. Zu jedem Zeitpunkt t, wie in Brown8217s-Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Trend. Hier werden sie rekursiv aus dem zum Zeitpunkt t beobachteten Wert von Y und den vorherigen Schätzungen von Pegel und Trend durch zwei Gleichungen berechnet, die exponentielle Glättung separat anwenden. Wenn der geschätzte Pegel und der Trend zum Zeitpunkt t-1 L t82091 und T t-1 sind. Dann ist die Prognose für Y tshy, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der tatsächliche Wert beobachtet wird, wird die aktualisierte Schätzung des Pegels rekursiv berechnet, indem zwischen Y tshy und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von 945 und 1- 945 interpoliert wird. Die Änderung des geschätzten Pegels, Nämlich L t 8209 L t82091. Kann als eine verrauschte Messung des Trends zum Zeitpunkt t interpretiert werden. Die aktualisierte Schätzung des Trends wird dann rekursiv berechnet, indem zwischen L t 8209 L t82091 und der vorherigen Schätzung des Trends T t-1 interpoliert wird. Unter Verwendung der Gewichte von 946 und 1-946: Die Interpretation der Trendglättungskonstante 946 ist analog zu der Pegelglättungskonstante 945. Modelle mit kleinen Werten von 946 nehmen an, dass sich der Trend mit der Zeit nur sehr langsam ändert, während Modelle mit Größere 946 nehmen an, dass sie sich schneller ändert. Ein Modell mit einem großen 946 glaubt, dass die ferne Zukunft sehr unsicher ist, da Fehler in der Trendschätzung bei der Prognose von mehr als einer Periode ganz wichtig werden. (Rückkehr nach oben) Die Glättungskonstanten 945 und 946 können auf übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Voraus-Prognosen minimiert wird. Wenn dies in Statgraphics getan wird, erweisen sich die Schätzungen als 945 0.3048 und 946 0,008. Der sehr geringe Wert von 946 bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten annimmt, so dass dieses Modell im Grunde versucht, einen langfristigen Trend abzuschätzen. In Analogie zum Durchschnittsalter der Daten, die für die Schätzung der lokalen Ebene der Serie verwendet werden, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, proportional zu 1/946, wenn auch nicht exakt gleich es. In diesem Falle ergibt sich 1 / 0,006 125. Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von 946 nicht wirklich 3 Dezimalstellen beträgt, sondern dieselbe von der gleichen Größenordnung wie die Stichprobengröße von 100 ist , So dass dieses Modell ist im Durchschnitt über eine ganze Menge Geschichte bei der Schätzung der Trend. Das Prognose-Diagramm unten zeigt, dass das LES-Modell einen etwas größeren lokalen Trend am Ende der Serie schätzt als der im SEStrend-Modell geschätzte konstante Trend. Außerdem ist der Schätzwert von 945 fast identisch mit dem, der durch Anpassen des SES-Modells mit oder ohne Trend erhalten wird, so dass dies fast das gleiche Modell ist. Nun, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll Schätzung einer lokalen Tendenz Wenn Sie 8220eyeball8221 dieser Handlung, sieht es so aus, als ob der lokale Trend nach unten am Ende der Serie gedreht hat Was ist passiert Die Parameter dieses Modells Wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Voraus-Prognosen, nicht längerfristigen Prognosen, abgeschätzt, wobei der Trend keinen großen Unterschied macht. Wenn alles, was Sie suchen, 1-Schritt-vor-Fehler sind, sehen Sie nicht das größere Bild der Trends über (sagen) 10 oder 20 Perioden. Um dieses Modell im Einklang mit unserer Augapfel-Extrapolation der Daten zu erhalten, können wir die Trendglättungskonstante manuell anpassen, so dass sie eine kürzere Basislinie für die Trendschätzung verwendet. Wenn wir beispielsweise 946 0,1 setzen, beträgt das durchschnittliche Alter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so mitteln. Here8217s, was das Prognose-Plot aussieht, wenn wir 946 0,1 setzen, während 945 0,3 halten. Dies scheint intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was ist mit den Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle. Der optimale Wert von 945 für das SES-Modell beträgt etwa 0,3, aber ähnliche Ergebnisse (mit etwas mehr oder weniger Reaktionsfähigkeit) werden mit 0,5 und 0,2 erhalten. (A) Holts linearer Exp. Glättung mit alpha 0.3048 und beta 0,008 (B) Holts linear exp. Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,3 (E) Einfache exponentielle Glättung mit alpha 0,2 Ihre Stats sind nahezu identisch, so dass wir wirklich die Wahl auf der Basis machen können Von 1-Schritt-Vorhersagefehlern innerhalb der Datenprobe. Wir müssen auf andere Überlegungen zurückgreifen. Wenn wir glauben, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zugrunde zu legen, können wir für das LES-Modell mit 945 0,3 und 946 0,1 einen Fall machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein, und würde auch für die nächsten 5 oder 10 Perioden mehr Mittelprognosen geben. (Rückkehr nach oben.) Welche Art von Trend-Extrapolation am besten ist: horizontal oder linear Empirische Evidenz deutet darauf hin, dass es, wenn die Daten bereits für die Inflation angepasst wurden (wenn nötig), unprätent ist, kurzfristige lineare Werte zu extrapolieren Trends sehr weit in die Zukunft. Die heutigen Trends können sich in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und konjunkturelle Abschwünge oder Aufschwünge in einer Branche abschwächen. Aus diesem Grund führt eine einfache exponentielle Glättung oft zu einer besseren Out-of-Probe, als ansonsten erwartet werden könnte, trotz ihrer quotnaivequot horizontalen Trend-Extrapolation. Damped Trendmodifikationen des linearen exponentiellen Glättungsmodells werden in der Praxis häufig auch eingesetzt, um in seinen Trendprojektionen eine Note des Konservatismus einzuführen. Das Dämpfungs-Trend-LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA-Modells (1,1,2), implementiert werden. Es ist möglich, Konfidenzintervalle um langfristige Prognosen zu berechnen, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Spezialfälle von ARIMA-Modellen betrachtet. (Achtung: Nicht alle Software berechnet die Konfidenzintervalle für diese Modelle korrekt.) Die Breite der Konfidenzintervalle hängt ab von (i) dem RMS-Fehler des Modells, (ii) der Art der Glättung (einfach oder linear) (iii) dem Wert (S) der Glättungskonstante (n) und (iv) die Anzahl der Perioden vor der Prognose. Im Allgemeinen breiten sich die Intervalle schneller aus, da 945 im SES-Modell größer wird und sich viel schneller ausbreiten, wenn lineare statt einfache Glättung verwendet wird. Dieses Thema wird im Abschnitt "ARIMA-Modelle" weiter erläutert. (Zurück zum Seitenanfang) In der Praxis liefert der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihe, wenn der Mittelwert konstant ist oder sich langsam ändert. Im Fall eines konstanten Mittelwertes wird der grßte Wert von m die besten Schätzungen des zugrunde liegenden Mittels liefern. Ein längerer Beobachtungszeitraum wird die Effekte der Variabilität ausmachen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung in dem zugrunde liegenden Prozess zu ermöglichen. Um zu veranschaulichen, schlagen wir einen Datensatz vor, der Änderungen im zugrundeliegenden Mittel der Zeitreihen enthält. Die Abbildung zeigt die Zeitreihen für die Darstellung zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als eine Konstante bei 10. Ab dem Zeitpunkt 21 erhöht er sich um eine Einheit in jeder Periode, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden simuliert, indem dem Mittelwert ein zufälliges Rauschen aus einer Normalverteilung mit Nullmittelwert und Standardabweichung 3 hinzugefügt wird. Die Ergebnisse der Simulation werden auf die nächste ganze Zahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir die Tabelle verwenden, müssen wir bedenken, dass zu einem gegebenen Zeitpunkt nur die letzten Daten bekannt sind. Die Schätzwerte des Modellparameters, für drei verschiedene Werte von m, werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung gezeigt. Die Abbildung zeigt die gleitende durchschnittliche Schätzung des Mittelwerts zu jedem Zeitpunkt und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Eine Schlussfolgerung ergibt sich unmittelbar aus der Figur. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, während der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und dem Mittelwert, der durch den gleitenden Durchschnitt vorhergesagt wird. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Bei einem abnehmenden Mittelwert ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Bias in der Schätzung eingeführt sind Funktionen von m. Je größer der Wert von m. Desto größer ist die Größe der Verzögerung und der Vorspannung. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittelwerts sind in den folgenden Gleichungen gegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, da das Beispielmodell nicht kontinuierlich zunimmt, sondern als Konstante beginnt, sich in einen Trend ändert und dann wieder konstant wird. Auch die Beispielkurven sind vom Rauschen betroffen. Die gleitende Durchschnittsprognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Vorspannung nehmen proportional zu. Die nachstehenden Gleichungen zeigen die Verzögerung und die Vorspannung von Prognoseperioden in die Zukunft im Vergleich zu den Modellparametern. Diese Formeln sind wiederum für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten dieses Ergebnis nicht überraschen. Der gleitende Durchschnittsschätzer basiert auf der Annahme eines konstanten Mittelwerts, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Studienzeitraums. Da Realzeitreihen den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens den größten Effekt für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widerstrebenden Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu verringern und m zu verringern, um die Prognose besser auf Veränderungen anzupassen Im Mittel. Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Wenn die Zeitreihe wirklich ein konstanter Wert ist, ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Term, der eine Funktion von und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes mit einer Stichprobe von m Beobachtungen, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Ein großes m macht die Prognose auf eine Änderung der zugrunde liegenden Zeitreihen unempfänglich. Um die Prognose auf Veränderungen anzupassen, wollen wir m so klein wie möglich (1), aber dies erhöht die Fehlerabweichung. Praktische Voraussage erfordert einen Zwischenwert. Prognose mit Excel Das Prognose-Add-In implementiert die gleitenden Durchschnittsformeln. Das folgende Beispiel zeigt die Analyse des Add-In für die Beispieldaten in Spalte B. Die ersten 10 Beobachtungen sind mit -9 bis 0 indexiert. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die Spalte MA (10) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall ist in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Vorwärts verschoben. Die Err (1) - Spalte (E) zeigt die Differenz zwischen der Beobachtung und der Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 6. Der prognostizierte Wert, der aus dem gleitenden Durchschnitt zum Zeitpunkt 0 gemacht wird, beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet.


No comments:

Post a Comment