So berechnen Sie gleitende Mittelwerte in Excel Excel-Datenanalyse für Dummies, 2. Ausgabe Der Datenanalyse-Befehl bietet ein Werkzeug zur Berechnung von verschobenen und exponentiell geglätteten Durchschnittswerten in Excel. Nehmen Sie an, um zu veranschaulichen, dass Sie tägliche Temperaturinformationen gesammelt haben. Sie wollen den dreitägigen gleitenden Durchschnitt 8212 den Durchschnitt der letzten drei Tage 8212 als Teil einer einfachen Wettervorhersage berechnen. Gehen Sie folgendermaßen vor, um die gleitenden Mittelwerte für diesen Datensatz zu berechnen. Um einen gleitenden Durchschnitt zu berechnen, klicken Sie zuerst auf die Schaltfläche Data tab8217s Data Analysis. Wenn Excel das Dialogfeld Datenanalyse anzeigt, wählen Sie aus der Liste den Eintrag Moving Average aus, und klicken Sie dann auf OK. Excel zeigt das Dialogfeld "Gleitender Durchschnitt" an. Identifizieren Sie die Daten, die Sie verwenden möchten, um den gleitenden Durchschnitt zu berechnen. Klicken Sie im Dialogfeld "Gleitender Durchschnitt" in das Eingabebereichsfeld. Identifizieren Sie dann den Eingabebereich, indem Sie entweder eine Arbeitsbereichsadresse eingeben oder mit der Maus den Arbeitsbereich auswählen. Ihre Bereichsreferenz sollte absolute Zellenadressen verwenden. Eine absolute Zellenadresse steht vor dem Spaltennamen und der Zeilennummer mit Vorzeichen, wie in A1: A10. Wenn die erste Zelle in Ihrem Eingabebereich eine Textbeschriftung enthält, um Ihre Daten zu identifizieren oder zu beschreiben, aktivieren Sie das Kontrollkästchen Labels in First Row. Erklären Sie im Textfeld Interval, wie viele Werte in die gleitende Durchschnittsberechnung einbezogen werden sollen. Sie können einen gleitenden Durchschnitt mit einer beliebigen Anzahl von Werten berechnen. Standardmäßig verwendet Excel die letzten drei Werte, um den gleitenden Durchschnitt zu berechnen. Um festzulegen, dass eine andere Anzahl von Werten zur Berechnung des gleitenden Durchschnitts verwendet werden soll, geben Sie diesen Wert in das Textfeld Intervall ein. Sagen Sie Excel, wo die gleitenden Durchschnittsdaten platziert werden sollen. Verwenden Sie das Textfeld Ausgabebereich, um den Arbeitsblattbereich zu identifizieren, in dem Sie die gleitenden Durchschnittsdaten platzieren möchten. In dem Arbeitsblattbeispiel wurden die gleitenden Durchschnittsdaten in den Arbeitsblattbereich B2: B10 platziert. (Optional) Geben Sie an, ob ein Diagramm gewünscht wird. Wenn Sie ein Diagramm möchten, das die gleitenden Durchschnittsinformationen darstellt, aktivieren Sie das Kontrollkästchen "Diagrammausgabe". (Optional) Geben Sie an, ob Standardfehlerinformationen berechnet werden sollen. Wenn Sie Standardfehler für die Daten berechnen möchten, aktivieren Sie das Kontrollkästchen Standardfehler. Excel legt Standardfehlerwerte neben den gleitenden Mittelwerten fest. (Die Standardfehlerinformationen gehen zu C2: C10.) Nachdem Sie die Angabe, welche gleitenden durchschnittlichen Informationen Sie berechnen lassen möchten und wo Sie sie platzieren möchten, klicken Sie auf OK. Excel berechnet gleitende Durchschnittsinformationen. Hinweis: Wenn Excel doesn8217t über genügend Informationen verfügt, um einen gleitenden Durchschnitt für einen Standardfehler zu berechnen, legt er die Fehlermeldung in die Zelle. Sie können sehen, mehrere Zellen, die diese Fehlermeldung als Wert anzeigen. Below können Sie meine C-Methode zu berechnen Bollinger Bands für jeden Punkt (gleitender Durchschnitt, up Band, down Band). Wie Sie sehen können, verwendet diese Methode 2 für Schleifen, um die sich bewegende Standardabweichung mit dem gleitenden Durchschnitt zu berechnen. Es verwendete, eine zusätzliche Schleife zu enthalten, um den gleitenden Durchschnitt über den letzten n Perioden zu berechnen. Dieses konnte ich entfernen, indem ich den neuen Punktwert zu totalaverage am Anfang der Schleife addierte und den i - n Punktwert am Ende der Schleife entfernte. Meine Frage ist jetzt grundsätzlich: Kann ich die verbleibende innere Schleife in einer ähnlichen Weise, wie ich mit dem gleitenden Durchschnitt gehandhabt, gefragt, Jan 31 13 um 21:45 Die Antwort ist ja, können Sie. Mitte der 80er Jahre entwickelte ich einen solchen Algorithmus (wahrscheinlich nicht original) in FORTRAN für eine Prozessüberwachungs - und Steuerungsanwendung. Leider, das war vor mehr als 25 Jahren und ich kann mich nicht erinnern, die genaue Formeln, aber die Technik war eine Erweiterung der eine für bewegte Durchschnitte, mit Berechnungen zweiten Ordnung anstelle von nur linear. Nach dem Betrachten des Codes einige, denke ich, dass ich suss heraus, wie ich es damals getan habe. Beachten Sie, wie Ihre innere Schleife macht eine Summe von Squares: in viel die gleiche Weise, dass Ihr Durchschnitt ursprünglich hatte eine Summe von Werten Die beiden einzigen Unterschiede sind die Reihenfolge (seine Macht 2 statt 1) und dass Sie den Durchschnitt subtrahieren Jeder Wert, bevor Sie es quadrieren. Nun, die unzertrennlich aussehen könnte, aber in der Tat können sie getrennt werden: Nun ist das erste Wort nur eine Summe von Squares, behandeln Sie das auf die gleiche Weise, dass Sie die Summe der Werte für den Durchschnitt. Der letzte Term (k2n) ist nur der Durchschnitt quadratisch mal der Periode. Da Sie das Ergebnis durch die Periode ohnehin teilen, können Sie einfach die neue durchschnittliche Quadrat ohne die zusätzliche Schleife hinzufügen. Schließlich können im zweiten Term (SUM (-2vi) k), da SUM (vi) total kn, dann können Sie es in diese ändern: oder nur -2k2n. Die das zweifache des durchschnittlichen Quadratwinkels beträgt, sobald die Periode (n) erneut unterteilt ist. Also die endgültige kombinierte Formel ist: (achten Sie darauf, die Gültigkeit davon zu überprüfen, da ich es von der Spitze des Kopfes ableiten) Und die Einbeziehung in Ihren Code sollte etwa so aussehen: Das Problem mit Ansätzen, die die Summe der Quadrate zu berechnen Dass es und das Quadrat der Summen ziemlich groß werden kann, und die Berechnung ihres Unterschiedes kann einen sehr großen Fehler einführen. So lasst uns etwas Besseres denken. Für warum dies erforderlich ist, finden Sie in der Wikipedia-Artikel auf Algorithmen für die Berechnung von Varianz und John Cook auf Theoretische Erklärung für numerische Ergebnisse) Erstens, anstatt die Berechnung der stddev lässt sich auf die Varianz. Sobald wir die Varianz haben, ist stddev nur die Quadratwurzel der Varianz. Angenommen, die Daten befinden sich in einem Array mit dem Namen x, das ein n-großes Fenster rollt, um eins kann man sich denken, indem man den Wert von x0 entfernt und den Wert von xn addiert. Die Mittelwerte von x0..xn-1 und x1..xn können durch beziehungsweise bezeichnet werden. Die Differenz zwischen den Varianzen von x0..xn-1 und x1..xn ist nach dem Auslösen einiger Ausdrücke und der Anwendung von (ab) (ab) (ab): Daher wird die Varianz durch etwas gestört, das Sie nicht aufrechterhalten muss Summe der Quadrate, die besser für numerische Genauigkeit ist. Sie können den Mittelwert und die Varianz einmal am Anfang mit einem geeigneten Algorithmus berechnen (Welfords-Methode). Danach müssen Sie jedes Mal, wenn Sie einen Wert im Fenster x0 durch ein anderes xn ersetzen müssen, den Durchschnitt und die Varianz wie folgt aktualisieren: Vielen Dank dafür. Ich benutzte es als Grundlage für eine Umsetzung in C für die CLR. Ich entdeckte, dass in der Praxis können Sie so aktualisieren, dass newVar ist eine sehr kleine negative Zahl, und die sqrt fehlschlägt. Ich führte eine if, um den Wert auf Null für diesen Fall zu begrenzen. Nicht Idee, aber stabil. Dies trat auf, wenn jeder Wert in meinem Fenster den gleichen Wert hatte (ich benutzte eine Fenstergröße von 20 und der Wert in Frage 0,5 war, falls jemand es versuchen und reproduzieren will) ndash Drew Noakes Jul 26 13 at 15:25 Ive (Und dazu beigetragen, dass die Bibliothek) für etwas sehr ähnliches. Seine Open-Source, Portierung auf C sollte einfach sein, wie Laden-gekauft Pie (haben Sie versucht, einen Kuchen aus dem Nichts). Überprüfen Sie es: commons. apache. org/math/api-3.1.1/index. Sie haben eine StandardDeviation Klasse. Gehen Sie in die Stadt antwortete Jan 31 13 at 21:48 You39re willkommen Ich didn39t haben die Antwort you39re suchen. Ich definitiv didn39t bedeuten, vorzuschlagen, Portierung der gesamten Bibliothek Nur die mindestens erforderlichen Code, der ein paar hundert Zeilen oder so sein sollte. Beachten Sie, dass ich keine Ahnung, was juristische / copyright Beschränkungen apache hat auf diesem Code, so you39d haben, um zu überprüfen, dass aus. Wenn Sie es verfolgen, hier ist der Link. So dass Abweichung FastMath ndash Jason Jan 31 13 am 22:36 Die meisten wichtigen Informationen wurde bereits oben gegeben --- aber vielleicht ist dies immer noch von allgemeinem Interesse. Eine winzige Java-Bibliothek zur Berechnung von gleitendem Durchschnitt und Standardabweichung finden Sie hier: github / tools4j / meanvar Die Implementierung basiert auf einer Variante der oben erwähnten Welfords-Methode. Methoden zum Entfernen und Ersetzen von Werten wurden abgeleitet, die für das Verschieben von Wert-Fenstern verwendet werden können. Smoothing Daten entfernt zufällige Variation und zeigt Trends und zyklische Komponenten Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form von zufälliger Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik zeigt, wenn sie richtig angewendet wird, deutlicher den zugrunde liegenden Trend, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mittelwertbildung ist der einfachste Weg, um Daten zu glätten Wir werden zunächst einige Mittelungsmethoden untersuchen, z. B. den einfachen Mittelwert aller vergangenen Daten. Ein Manager eines Lagers möchte wissen, wie viel ein typischer Lieferant in 1000-Dollar-Einheiten liefert. Er / sie nimmt eine Stichprobe von 12 Lieferanten, die zufällig die folgenden Ergebnisse erhalten: Der berechnete Mittelwert oder Durchschnitt der Daten 10. Der Manager beschließt, dies als Schätzung der Ausgaben eines typischen Lieferanten zu verwenden. Ist dies eine gute oder schlechte Schätzung Mittel quadratischen Fehler ist ein Weg, um zu beurteilen, wie gut ein Modell ist Wir berechnen die mittlere quadratische Fehler. Der Fehler true Betrag verbraucht minus die geschätzte Menge. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel verwenden, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittliche Gewichtungen alle früheren Beobachtungen gleich In Zusammenfassung, wir sagen, dass die einfachen Mittelwert oder Mittelwert aller vergangenen Beobachtungen ist nur eine nützliche Schätzung für die Prognose, wenn es keine Trends. Wenn es Trends, verwenden Sie verschiedene Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle früheren Beobachtungen gleichermaßen. Zum Beispiel ist der Durchschnitt der Werte 3, 4, 5 4. Wir wissen natürlich, dass ein Durchschnitt berechnet wird, indem alle Werte addiert werden und die Summe durch die Anzahl der Werte dividiert wird. Eine andere Methode, den Durchschnitt zu berechnen, ist die Addition jedes Wertes durch die Anzahl der Werte oder 3/3 4/3 5/3 1 1.3333 1.6667 4. Der Multiplikator 1/3 wird als Gewicht bezeichnet. Allgemein: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. ,, Links (frac rechts) xn. Die (linke (frac rechts)) sind die Gewichte und natürlich summieren sie sich auf 1.Moving Averages - Einfache und Exponential Moving Averages - Einfache und exponentielle Einführung Die gleitenden Mittelwerte glatten die Kursdaten zu einem Trendfolger. Sie prognostizieren nicht die Kursrichtung, sondern definieren die aktuelle Richtung mit einer Verzögerung. Moving Averages Lag, weil sie auf vergangenen Preisen basieren. Trotz dieser Verzögerung, gleitende Durchschnitte helfen, glatte Preis-Aktion und Filter aus dem Lärm. Sie bilden auch die Bausteine für viele andere technische Indikatoren und Overlays, wie Bollinger Bands. MACD und dem McClellan-Oszillator. Die beiden beliebtesten Arten von gleitenden Durchschnitten sind die Simple Moving Average (SMA) und die Exponential Moving Average (EMA). Diese Bewegungsdurchschnitte können verwendet werden, um die Richtung des Trends zu identifizieren oder potentielle Unterstützungs - und Widerstandswerte zu definieren. Here039s ein Diagramm mit einem SMA und einem EMA auf ihm: Einfache gleitende durchschnittliche Berechnung Ein einfacher gleitender Durchschnitt wird gebildet, indem man den durchschnittlichen Preis eines Wertpapiers über einer bestimmten Anzahl von Perioden berechnet. Die meisten gleitenden Mittelwerte basieren auf den Schlusskursen. Ein 5-tägiger einfacher gleitender Durchschnitt ist die fünftägige Summe der Schlusskurse geteilt durch fünf. Wie der Name schon sagt, ist ein gleitender Durchschnitt ein Durchschnitt, der sich bewegt. Alte Daten werden gelöscht, wenn neue Daten verfügbar sind. Dies bewirkt, dass sich der Durchschnitt entlang der Zeitskala bewegt. Unten ist ein Beispiel für einen 5-tägigen gleitenden Durchschnitt, der sich über drei Tage entwickelt. Der erste Tag des gleitenden Durchschnitts deckt nur die letzten fünf Tage ab. Der zweite Tag des gleitenden Mittelwerts fällt den ersten Datenpunkt (11) und fügt den neuen Datenpunkt (16) hinzu. Der dritte Tag des gleitenden Durchschnitts setzt sich fort, indem der erste Datenpunkt (12) abfällt und der neue Datenpunkt (17) addiert wird. Im obigen Beispiel steigen die Preise allmählich von 11 auf 17 über insgesamt sieben Tage. Beachten Sie, dass der gleitende Durchschnitt auch von 13 auf 15 über einen dreitägigen Berechnungszeitraum steigt. Beachten Sie auch, dass jeder gleitende Durchschnittswert knapp unter dem letzten Kurs liegt. Zum Beispiel ist der gleitende Durchschnitt für Tag eins gleich 13 und der letzte Preis ist 15. Preise der vorherigen vier Tage waren niedriger und dies führt dazu, dass der gleitende Durchschnitt zu verzögern. Exponentielle gleitende Durchschnittsberechnung Exponentielle gleitende Mittelwerte reduzieren die Verzögerung, indem mehr Gewicht auf die jüngsten Preise angewendet wird. Die Gewichtung des jüngsten Preises hängt von der Anzahl der Perioden im gleitenden Durchschnitt ab. Es gibt drei Schritte, um einen exponentiellen gleitenden Durchschnitt zu berechnen. Berechnen Sie zunächst den einfachen gleitenden Durchschnitt. Ein exponentieller gleitender Durchschnitt (EMA) muss irgendwo anfangen, so dass ein einfacher gleitender Durchschnitt als die vorherige Periode039s EMA in der ersten Berechnung verwendet wird. Zweitens, berechnen Sie die Gewichtung Multiplikator. Drittens berechnen Sie den exponentiellen gleitenden Durchschnitt. Die folgende Formel ist für eine 10-tägige EMA. Ein 10-Perioden-exponentieller gleitender Durchschnitt wendet eine 18,18 Gewichtung auf den jüngsten Preis an. Eine 10-Perioden-EMA kann auch als 18.18 EMA bezeichnet werden. Ein 20-Perioden-EMA wendet einen 9,52 - Wiegen auf den jüngsten Preis an (2 / (201) .0952). Beachten Sie, dass die Gewichtung für den kürzeren Zeitraum mehr ist als die Gewichtung für den längeren Zeitraum. In der Tat, die Gewichtung sinkt um die Hälfte jedes Mal, wenn die gleitende durchschnittliche Periode verdoppelt. Wenn Sie uns einen bestimmten Prozentsatz für eine EMA zuweisen möchten, können Sie diese Formel verwenden, um sie in Zeiträume zu konvertieren, und geben Sie dann diesen Wert als den EMA039s-Parameter ein: Nachstehend ist ein Kalkulationstabellenbeispiel für einen 10-tägigen einfachen gleitenden Durchschnitt und ein 10- Tag exponentiellen gleitenden Durchschnitt für Intel. Einfache gleitende Durchschnitte sind geradlinig und erfordern wenig Erklärung. Der 10-Tage-Durchschnitt bewegt sich einfach, sobald neue Preise verfügbar sind und alte Preise fallen. Der exponentielle gleitende Durchschnitt beginnt mit dem einfachen gleitenden Mittelwert (22.22) bei der ersten Berechnung. Nach der ersten Berechnung übernimmt die Normalformel. Da eine EMA mit einem einfachen gleitenden Durchschnitt beginnt, wird ihr wahrer Wert erst nach 20 oder späteren Perioden realisiert. Mit anderen Worten, der Wert auf der Excel-Tabelle kann sich aufgrund des kurzen Rückblicks von dem Diagrammwert unterscheiden. Diese Kalkulationstabelle geht nur zurück 30 Perioden, was bedeutet, dass der Einfluss der einfachen gleitenden Durchschnitt hatte 20 Perioden zu zerstreuen. StockCharts geht mindestens 250 Perioden (typischerweise viel weiter) für seine Berechnungen zurück, so dass die Effekte des einfachen gleitenden Durchschnitts in der ersten Berechnung vollständig abgebaut sind. Der Lagfaktor Je länger der gleitende Durchschnitt ist, desto stärker ist die Verzögerung. Ein 10-Tage-exponentieller gleitender Durchschnitt wird die Preise sehr eng umringen und sich kurz nach dem Kursumschlag wenden. Kurze gleitende Durchschnitte sind wie Schnellboote - flink und schnell zu ändern. Im Gegensatz dazu enthält ein 100-Tage gleitender Durchschnitt viele vergangene Daten, die ihn verlangsamen. Längere gleitende Durchschnitte sind wie Ozeantanker - lethargisch und langsam zu ändern. Es dauert eine größere und längere Kursbewegung für einen 100-Tage gleitenden Durchschnitt, um Kurs zu ändern. Die Grafik oben zeigt die SampP 500 ETF mit einer 10-tägigen EMA eng ansprechender Preise und einem 100-tägigen SMA-Schleifen höher. Selbst mit dem Januar-Februar-Rückgang hielt die 100-tägige SMA den Kurs und kehrte nicht zurück. Die 50-Tage-SMA passt irgendwo zwischen den 10 und 100 Tage gleitenden Durchschnitten, wenn es um den Verzögerungsfaktor kommt. Simple vs Exponential Moving Averages Obwohl es klare Unterschiede zwischen einfachen gleitenden Durchschnitten und exponentiellen gleitenden Durchschnitten, ist eine nicht unbedingt besser als die anderen. Exponentielle gleitende Mittelwerte haben weniger Verzögerungen und sind daher empfindlicher gegenüber den jüngsten Preisen - und den jüngsten Preisveränderungen. Exponentielle gleitende Mittelwerte drehen sich vor einfachen gleitenden Durchschnitten. Einfache gleitende Durchschnitte stellen dagegen einen wahren Durchschnittspreis für den gesamten Zeitraum dar. Als solches können einfache gleitende Mittel besser geeignet sein, um Unterstützungs - oder Widerstandsniveaus zu identifizieren. Die gleitende Durchschnittspräferenz hängt von den Zielen, dem analytischen Stil und dem Zeithorizont ab. Chartisten sollten mit beiden Arten von gleitenden Durchschnitten sowie verschiedene Zeitrahmen zu experimentieren, um die beste Passform zu finden. Die nachstehende Grafik zeigt IBM mit der 50-Tage-SMA in Rot und der 50-Tage-EMA in Grün. Beide gipfelten Ende Januar, aber der Rückgang in der EMA war schärfer als der Rückgang der SMA. Die EMA erschien Mitte Februar, aber die SMA setzte weiter unten bis Ende März. Beachten Sie, dass die SMA über einen Monat nach der EMA. Längen und Zeitrahmen Die Länge des gleitenden Mittelwerts hängt von den analytischen Zielen ab. Kurze gleitende Durchschnitte (5-20 Perioden) eignen sich am besten für kurzfristige Trends und den Handel. Chartisten, die sich für mittelfristige Trends interessieren, würden sich für längere bewegte Durchschnitte entscheiden, die 20-60 Perioden verlängern könnten. Langfristige Anleger bevorzugen gleitende Durchschnitte mit 100 oder mehr Perioden. Einige gleitende durchschnittliche Längen sind beliebter als andere. Die 200-Tage gleitenden Durchschnitt ist vielleicht die beliebteste. Wegen ihrer Länge ist dies eindeutig ein langfristiger gleitender Durchschnitt. Als nächstes ist der 50-Tage gleitende Durchschnitt für den mittelfristigen Trend ziemlich populär. Viele Chartisten nutzen die 50-Tage-und 200-Tage gleitende Durchschnitte zusammen. Kurzfristig war ein 10 Tage gleitender Durchschnitt in der Vergangenheit ziemlich populär, weil er leicht zu berechnen war. Man hat einfach die Zahlen addiert und den Dezimalpunkt verschoben. Trendidentifikation Die gleichen Signale können mit einfachen oder exponentiellen gleitenden Mittelwerten erzeugt werden. Wie oben erwähnt, hängt die Präferenz von jedem Individuum ab. Die folgenden Beispiele werden sowohl einfache als auch exponentielle gleitende Mittelwerte verwenden. Der Begriff gleitender Durchschnitt gilt für einfache und exponentielle gleitende Mittelwerte. Die Richtung des gleitenden Durchschnitts vermittelt wichtige Informationen über die Preise. Ein steigender Durchschnitt zeigt, dass die Preise im Allgemeinen steigen. Ein sinkender Durchschnittswert zeigt an, dass die Preise im Durchschnitt sinken. Ein steigender langfristiger gleitender Durchschnitt spiegelt einen langfristigen Aufwärtstrend wider. Ein sinkender langfristiger gleitender Durchschnitt spiegelt einen langfristigen Abwärtstrend wider. Das Diagramm oben zeigt 3M (MMM) mit einem 150-Tage-exponentiellen gleitenden Durchschnitt. Dieses Beispiel zeigt, wie gut bewegte Durchschnitte arbeiten, wenn der Trend stark ist. Die 150-Tage-EMA sank im November 2007 und wieder im Januar 2008. Beachten Sie, dass es einen Rückgang von 15 nahm, um die Richtung dieses gleitenden Durchschnitts umzukehren. Diese nachlaufenden Indikatoren identifizieren Trendumkehrungen, wie sie auftreten (am besten) oder nach deren Eintritt (im schlimmsten Fall). MMM setzte unten in März 2009 und dann stieg 40-50. Beachten Sie, dass die 150-Tage-EMA nicht auftauchte, bis nach diesem Anstieg. Sobald es aber tat, setzte MMM die folgenden 12 Monate höher fort. Moving-Durchschnitte arbeiten brillant in starken Trends. Doppelte Frequenzweichen Zwei gleitende Mittelwerte können zusammen verwendet werden, um Frequenzweiche zu erzeugen. In der technischen Analyse der Finanzmärkte. John Murphy nennt dies die doppelte Crossover-Methode. Doppelte Crossover beinhalten einen relativ kurzen gleitenden Durchschnitt und einen relativ langen gleitenden Durchschnitt. Wie bei allen gleitenden Durchschnitten definiert die allgemeine Länge des gleitenden Durchschnitts den Zeitrahmen für das System. Ein System, das eine 5-Tage-EMA und eine 35-Tage-EMA verwendet, wäre kurzfristig. Ein System, das eine 50-tägige SMA - und 200-Tage-SMA verwendet, wäre mittelfristig, vielleicht sogar langfristig. Eine bullische Überkreuzung tritt auf, wenn der kürzere gleitende Durchschnitt über dem längeren gleitenden Durchschnitt kreuzt. Dies wird auch als goldenes Kreuz bezeichnet. Eine bärische Überkreuzung tritt ein, wenn der kürzere gleitende Durchschnitt unter dem längeren gleitenden Durchschnitt liegt. Dies wird als ein totes Kreuz bekannt. Gleitende Mittelübergänge erzeugen relativ späte Signale. Schließlich setzt das System zwei hintere Indikatoren ein. Je länger die gleitenden Durchschnittsperioden, desto größer die Verzögerung in den Signalen. Diese Signale funktionieren gut, wenn eine gute Tendenz gilt. Allerdings wird ein gleitender Durchschnitt Crossover-System produzieren viele whipsaws in Abwesenheit einer starken Tendenz. Es gibt auch eine Dreifach-Crossover-Methode, die drei gleitende Durchschnitte beinhaltet. Wieder wird ein Signal erzeugt, wenn der kürzeste gleitende Durchschnitt die beiden längeren Mittelwerte durchläuft. Ein einfaches Triple-Crossover-System könnte 5-Tage-, 10-Tage - und 20-Tage-Bewegungsdurchschnitte beinhalten. Das Diagramm oben zeigt Home Depot (HD) mit einer 10-tägigen EMA (grüne gepunktete Linie) und 50-Tage-EMA (rote Linie). Die schwarze Linie ist die tägliche Schließung. Mit einem gleitenden Durchschnitt Crossover hätte dazu geführt, dass drei Peitschen vor dem Fang eines guten Handels. Die 10-tägige EMA brach unterhalb der 50-Tage-EMA Ende Oktober (1), aber dies dauerte nicht lange, wie die 10-Tage zog zurück oben Mitte November (2). Dieses Kreuz dauerte länger, aber die nächste bärige Crossover im Januar (3) ereignete sich gegen Ende November Preisniveaus, was zu einer weiteren Peitsche führte. Dieses bärische Kreuz dauerte nicht lange, als die 10-Tage-EMA über die 50-Tage ein paar Tage später zurückging (4). Nach drei schlechten Signalen, schien das vierte Signal eine starke Bewegung als die Aktie vorrückte über 20. Es gibt zwei Takeaways hier. Erstens, Crossovers sind anfällig für whipsaw. Ein Preis oder Zeitfilter kann angewendet werden, um zu helfen, whipsaws zu verhindern. Händler könnten verlangen, dass die Crossover 3 Tage dauern, bevor sie handeln oder verlangen, dass die 10-Tage-EMA zu bewegen, über / unterhalb der 50-Tage-EMA um einen bestimmten Betrag vor handeln. Zweitens kann MACD verwendet werden, um diese Frequenzweichen zu identifizieren und zu quantifizieren. MACD (10,50,1) zeigt eine Linie, die die Differenz zwischen den beiden exponentiellen gleitenden Mittelwerten darstellt. MACD wird positiv während eines goldenen Kreuzes und negativ während eines toten Kreuzes. Der Prozentsatz-Oszillator (PPO) kann auf die gleiche Weise verwendet werden, um Prozentunterschiede anzuzeigen. Beachten Sie, dass MACD und das PPO auf exponentiellen gleitenden Durchschnitten basieren und nicht mit einfachen gleitenden Durchschnitten zusammenpassen. Diese Grafik zeigt Oracle (ORCL) mit dem 50-Tage EMA, 200-Tage EMA und MACD (50.200,1). Es gab vier gleitende durchschnittliche Kreuzungen über einen Zeitraum von 2 1/2 Jahren. Die ersten drei führten zu Peitschen oder schlechten Trades. Ein anhaltender Trend begann mit der vierten Crossover als ORCL bis Mitte der 20er Jahre. Erneut bewegen sich die durchschnittlichen Crossover-Effekte groß, wenn der Trend stark ist, erzeugen aber Verluste in Abwesenheit eines Trends. Preis-Crossover Moving-Durchschnitte können auch verwendet werden, um Signale mit einfachen Preis-Crossover zu generieren. Ein bullisches Signal wird erzeugt, wenn die Preise über dem gleitenden Durchschnitt liegen. Ein bäres Signal wird erzeugt, wenn die Preise unter dem gleitenden Durchschnitt liegen. Preis-Crossover können kombiniert werden, um innerhalb der größeren Trend Handel. Der längere gleitende Durchschnitt setzt den Ton für den größeren Trend und der kürzere gleitende Durchschnitt wird verwendet, um die Signale zu erzeugen. Man würde bullish Preiskreuze nur dann suchen, wenn die Preise schon über dem längeren gleitenden Durchschnitt liegen. Dies würde den Handel im Einklang mit dem größeren Trend. Wenn zum Beispiel der Kurs über dem gleitenden 200-Tage-Durchschnitt liegt, würden sich die Chartisten nur auf Signale konzentrieren, wenn der Kurs über dem 50-Tage-Gleitender Durchschnitt liegt. Offensichtlich würde ein Schritt unterhalb der 50-Tage gleitenden Durchschnitt ein solches Signal vorausgehen, aber solche bearish Kreuze würden ignoriert, weil der größere Trend ist. Ein bearish Kreuz würde einfach vorschlagen, ein Pullback in einem größeren Aufwärtstrend. Ein Cross-Back über dem 50-Tage-Gleitender Durchschnitt würde einen Preisanstieg und eine Fortsetzung des größeren Aufwärtstrends signalisieren. Die nächste Tabelle zeigt Emerson Electric (EMR) mit dem 50-Tage EMA und 200-Tage EMA. Die Aktie bewegte sich über und hielt über dem 200-Tage gleitenden Durchschnitt im August. Es gab Dips unterhalb der 50-Tage-EMA Anfang November und wieder Anfang Februar. Die Preise schnell zurück über die 50-Tage-EMA zu bullish Signale (grüne Pfeile) in Harmonie mit dem größeren Aufwärtstrend. Im Indikatorfenster wird MACD (1,50,1) angezeigt, um Preiskreuze über oder unter dem 50-Tage-EMA zu bestätigen. Die 1-tägige EMA entspricht dem Schlusskurs. MACD (1,50,1) ist positiv, wenn das Schließen oberhalb der 50-Tage-EMA und negativ ist, wenn das Schließen unterhalb der 50-Tage-EMA liegt. Unterstützung und Widerstand Der Gleitende Durchschnitt kann auch als Unterstützung in einem Aufwärtstrend und Widerstand in einem Abwärtstrend dienen. Ein kurzfristiger Aufwärtstrend könnte Unterstützung nahe dem 20-tägigen einfachen gleitenden Durchschnitt finden, der auch in Bollinger-Bändern verwendet wird. Ein langfristiger Aufwärtstrend könnte Unterstützung nahe dem 200-tägigen einfachen gleitenden Durchschnitt finden, der der populärste langfristige bewegliche Durchschnitt ist. Wenn Tatsache, die 200-Tage gleitenden Durchschnitt bieten kann Unterstützung oder Widerstand, nur weil es so weit verbreitet ist. Es ist fast wie eine sich selbst erfüllende Prophezeiung. Die Grafik oben zeigt die NY Composite mit dem 200-Tage einfachen gleitenden Durchschnitt von Mitte 2004 bis Ende 2008. Die 200-Tage-Support zur Verfügung gestellt, mehrmals während des Vorhabens. Sobald der Trend mit einem Doppel-Top-Support-Pause umgekehrt, der 200-Tage gleitenden Durchschnitt als Widerstand um 9500 gehandelt. Erwarten Sie nicht genaue Unterstützung und Widerstand Ebenen von gleitenden Durchschnitten, vor allem längeren gleitenden Durchschnitten. Märkte werden durch Emotionen gefahren, wodurch sie anfällig für Überschreitungen sind. Statt genauer Ebenen können gleitende Mittelwerte verwendet werden, um Unterstützungs - oder Widerstandszonen zu identifizieren. Schlussfolgerungen Die Vorteile der Verwendung von bewegten Durchschnitten müssen gegen die Nachteile gewogen werden. Moving-Durchschnitte sind Trend nach, oder nacheilende, Indikatoren, die immer einen Schritt hinter sich. Dies ist nicht unbedingt eine schlechte Sache. Immerhin ist der Trend ist dein Freund und es ist am besten, in die Richtung des Trends Handel. Die gleitenden Durchschnitte gewährleisten, dass ein Händler dem aktuellen Trend entspricht. Auch wenn der Trend ist dein Freund, verbringen die Wertpapiere viel Zeit in Handelsspannen, die gleitende Durchschnitte ineffektiv machen. Einmal in einem Trend, bewegte Durchschnitte halten Sie in, sondern geben auch späte Signale. Don039t erwarten, an der Spitze zu verkaufen und kaufen Sie am unteren Rand mit gleitenden Durchschnitten. Wie bei den meisten technischen Analysetools sollten die gleitenden Mittelwerte nicht allein verwendet werden, sondern in Verbindung mit anderen komplementären Tools. Chartisten können gleitende Durchschnitte verwenden, um den Gesamttrend zu definieren und dann RSI zu verwenden, um überkaufte oder überverkaufte Niveaus zu definieren. Hinzufügen von Bewegungsdurchschnitten zu StockCharts Diagrammen Gleitende Durchschnitte sind als Preisüberlagerungsfunktion auf der SharpCharts-Workbench verfügbar. Mit dem Dropdown-Menü Overlays können Benutzer entweder einen einfachen gleitenden Durchschnitt oder einen exponentiellen gleitenden Durchschnitt auswählen. Der erste Parameter wird verwendet, um die Anzahl der Zeitperioden einzustellen. Ein optionaler Parameter kann hinzugefügt werden, um festzulegen, welches Preisfeld in den Berechnungen verwendet werden soll - O für die Open, H für High, L für Low und C für Close. Ein Komma wird verwendet, um Parameter zu trennen. Ein weiterer optionaler Parameter kann hinzugefügt werden, um die gleitenden Mittelwerte nach links (vorbei) oder nach rechts (zukünftig) zu verschieben. Eine negative Zahl (-10) würde den gleitenden Durchschnitt auf die linken 10 Perioden verschieben. Eine positive Zahl (10) würde den gleitenden Durchschnitt auf die rechten 10 Perioden verschieben. Mehrere gleitende Durchschnitte können dem Preisplot überlagert werden, indem einfach eine weitere Überlagerungslinie zur Werkbank hinzugefügt wird. StockCharts-Mitglieder können die Farben und den Stil ändern, um zwischen mehreren gleitenden Durchschnitten zu unterscheiden. Nachdem Sie eine Anzeige ausgewählt haben, öffnen Sie die erweiterten Optionen, indem Sie auf das kleine grüne Dreieck klicken. Erweiterte Optionen können auch verwendet werden, um eine gleitende mittlere Überlagerung zu anderen technischen Indikatoren wie RSI, CCI und Volumen hinzuzufügen. Klicken Sie hier für ein Live-Diagramm mit mehreren verschiedenen gleitenden Durchschnitten. Verwenden von Moving Averages mit StockCharts-Scans Hier finden Sie einige Beispielscans, die die StockCharts-Mitglieder verwenden können, um verschiedene gleitende durchschnittliche Situationen zu scannen: Bullish Moving Average Cross: Diese Scans suchen nach Aktien mit einem steigenden 150-Tage-Durchschnitt und einem bullish Kreuz der 5 Tag EMA und 35-Tage EMA. Der 150-Tage gleitende Durchschnitt steigt, solange er über seinem Niveau vor fünf Tagen handelt. Ein bullish Kreuz tritt auf, wenn die 5-Tage-EMA bewegt sich über dem 35-Tage-EMA auf überdurchschnittlichen Volumen. Bearish Moving Average Cross: Diese Scans sucht nach Aktien mit einem fallenden 150-Tage einfachen gleitenden Durchschnitt und einem bärischen Kreuz der 5-Tage EMA und 35-Tage EMA. Der 150-Tage gleitende Durchschnitt fällt, solange er unter seinem Niveau vor fünf Tagen handelt. Ein bäriges Kreuz tritt auf, wenn die 5-Tage-EMA unterhalb der 35-Tage-EMA auf überdurchschnittlichem Volumen bewegt. Weitere Studie John Murphy039s Buch hat ein Kapitel gewidmet gleitende Durchschnitte und ihre verschiedenen Verwendungen. Murphy deckt die Vor-und Nachteile der gleitenden Durchschnitte. Darüber hinaus zeigt Murphy, wie bewegte Durchschnitte mit Bollinger Bands und kanalbasierten Handelssystemen funktionieren. Technische Analyse der Finanzmärkte John MurphyMoving Standardabweichung Moving Standardabweichung ist eine statistische Messung der Marktvolatilität. Es macht keine Vorhersagen der Marktrichtung, aber es kann als ein Bestätigungsindikator dienen. Sie geben die Anzahl der zu verwendenden Perioden an, und die Studie berechnet die Standardabweichung der Preise vom gleitenden Durchschnitt der Preise. Es wird durch Berechnen eines n-Zeit-Zeitraums einfacher verschiebender Mittelwert des Datenelements abgeleitet. Dann summiert er die Quadrate der Differenz zwischen dem Datenelement und seinem verschiebenden Mittelwert über jede der vorhergehenden n Zeitperioden. Schließlich teilt er diese Summe durch n und berechnet die Quadratwurzel dieses Ergebnisses. Eigenschaften Zeitraum: Die Anzahl der Balken in einem Diagramm. Wenn das Diagramm Tagesdaten anzeigt, dann bedeutet Periode Tage in Wochendiagrammen, die Periode steht für Wochen und so weiter. Die Anwendung verwendet einen Standardwert von 20. Aspekt: Das Feld Symbol, auf dem die Studie berechnet wird. Feld ist auf Default gesetzt, das beim Betrachten eines Diagramms für ein bestimmtes Symbol dasselbe ist wie Schließen. Interpretation Standardabweichungswerte steigen deutlich, wenn der analysierte Kontraktindikator den Wert dramatisch verändert. Wenn die Märkte stabil sind, sind niedrige Standardabweichungswerte normal. Niedrige Standardabweichungswerte typischerweise tendieren dazu, bevor signifikante Aufwärtsänderungen im Preis auftreten. Analysten sind sich einig, dass hohe Volatilität ein Teil der Top-Tops ist, während niedrige Volatilität begleitet große Böden. Inhalt Quelle: FutureSource View Weitere technische Analysen Studien Primary Sidebar Erhöhen Sie Ihre Trading Aktuelle Tweets Sind Sie ein visueller Lerner Entdecken Sie unsere Webinars Seite für Video-Tutorials und Marktanalyse von unseren Brokern: t. co/Yc92vYQsSW Zeit vor 20 Stunden über Buffer 10 Richtlinien für Online Futures Trading: t. co/aeDodxfyzL t. co/t7Of3h4psp Zeit vor 23 Stunden über Puffer Bearish auf dem Markt Betrachten Sie eine lange setzen Strategie. Heres how - t. co/Knv6IoeFbA Vor einiger Zeit 1 Tag über Buffer Copyright xA9 2016 xB7 Daniels Trading. Alle Rechte vorbehalten. Dieses Material wird als Aufforderung zur Eintragung eines Derivatgeschäfts vermittelt. Dieses Material wurde von einem Daniels Trading Broker bereit, die Forschung Marktkommentar und Handel Empfehlungen im Rahmen seiner Aufforderung jedoch für Geschäfte für Konten und Aufforderung zur Abgabe bereitstellt, Daniels Handels keine Forschungsabteilung unterhalten, wie in CFTC Rule 1.71 definiert. Daniels Trading, seine Auftraggeber, Makler und Mitarbeiter können in Derivate auf eigene Rechnung oder auf Rechnung anderer Handel. Aufgrund verschiedener Faktoren (wie Risikotoleranz, Margin-Anforderungen, Handelsziele, kurzfristig vs. langfristige Strategien, technische vs. fundamentale Marktanalyse und anderen Faktoren), wie der Handel in der Initiierung oder der Liquidation von Positionen kann, die anders sind Oder den darin enthaltenen Stellungnahmen und Empfehlungen widersprechen. Die Wertentwicklung in der Vergangenheit ist nicht unbedingt ein Indikator für die zukünftige Wertentwicklung. Das Verlustrisiko im Handelsterminkontrakte oder Warenoptionen können erheblich sein, und daher sollten Anleger die Gefahren, die mit Leveraged Positionen beteiligt verstehen und Verantwortung für die Risiken im Zusammenhang mit solchen Anlagen und für ihre Ergebnisse übernehmen müssen. Sie sollten sorgfältig prüfen, ob dieser Handel für Sie geeignet ist im Hinblick auf Ihre Umstände und finanziellen Ressourcen. Sie sollten die Risikoveröffentlichungsseite lesen, auf die unter www. DanielsTrading unten auf der Homepage zugegriffen wird. Daniels Trading ist weder Mitglied noch unterstützt es ein Handelssystem, einen Newsletter oder einen ähnlichen Dienst. Daniels Trading übernimmt keine Gewährleistung oder Verifizierung von Leistungsansprüchen dieser Systeme oder Dienste.
No comments:
Post a Comment